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cal problems, which is the main subject of this work, with
a broad range of applications.In this work the coupled conduction/radiation heat transfer pro-

cess in a nonconvex and black cylindrical body is simulated. This The main objective of this work is the (local) simulation
nonlinear process is mathematically described by a partial differen- of the steady-state conduction/radiation energy transfer
tial equation subjected to a nonlinear boundary condition that repre- process in a nonconvex body surrounded by vacuum, em-
sents the coupling between the conduction heat transfer and the

ploying a systematic procedure which is reliable and ade-thermal radiation heat transfer on a body boundary. The solution
quate to the simulation of any conduction/radiation heatof the problem is reached as the limit of a sequence whose elements

are obtained from the minimization of a functional. In this work the transfer problem in black bodies, and which provides only
elements of this sequence are approximated by finite elements. physically admissible solutions [4].
Some particular cases are simulated and the results are compared The simulation of energy transfer processes involvingwith the ones obtained under the (usual) constant temperature

thermal radiation is in general carried out with the aid ofhypothesis. Q 1996 Academic Press, Inc.

several simplified approaches. The most common is the
constant temperature approximation [6–8] in which the
body is assumed to be isothermal. The linearized approach,1. INTRODUCTION
where it is assumed the existence of a radiation heat trans-

The mechanism for energy transfer in bodies surrounded fer coefficient, is also usual, especially when there exists a
by an atmosphere-free space is a combination of conduc- convective heat transfer too [9].
tive heat transfer and thermal radiative heat transfer [1]. In order to present concrete results to illustrate the effect
For nonopaque bodies this combination takes place in the of the nonconvexity and the consequences of the usual
entire body [2, 3] but, if the body is opaque, the coupling constant temperature approximation, the energy transfer
between conduction and radiation occurs only on body process in a rigid and nonconvex (cylindrical) body will
boundary [4, 5]. be considered. The body will be represented by the set

The subject of this work is the energy transfer process
in a rigid, opaque and nonconvex body surrounded by an V ; h(x, y, z) [ R3 such that
atmosphere-free space.

R2
1 , x2 1 y2 , R2

2 , 2 L , z , LjThis coupled conduction/radiation heat transfer process
is an inherently nonlinear phenomenon, where the cou- with boundary V ; V1 < V2 < VU < VL in which
pling between conduction and radiation on the body
boundary is mathematically represented by a nonlinear V1 ; h(x, y, z) [ R3 such that
relation between the absolute temperature and its exterior

x2 1 y2 5 R2
1 , 2 L , z , Ljnormal derivative. The unknown is the temperature distri-

bution in the body. V2 ; h(x, y, z) [ R3 such that
When the heat transfer process takes place in a noncon-

x2 1 y2 5 R2
2 , 2 L , z , Ljvex body, the mathematical description becomes consider-

ably more complex, since there will exist a direct thermal VU < VL ; h(x, y, z) [ R3 such that
radiant interchange among subsets of body boundary. This

R2
1 , x2 1 y2 , R2

2interchange plays the role of a nonlinear temperature-
dependent external source. In other words, the external and z 5 2L or z 5 Lj
energy supply on body boundary depends on the tempera-

as it is represented in Fig. 1.ture field of this same body.
In order to simplify the mathematical problem the bodyThe inherent nonlinearity associated with nonconvexity

gives rise to a class of complex and interesting mathemati- will be assumed black (the black body does not reflect
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E 5 sT 4, T 5 T̂(x, y, z), (x, y, z) [ V (1)

in which s is the Stefan–Boltzmann constant and T is the
absolute temperature field. On physical grounds, T must
be nonnegative everywhere.

Since the subsets V2 , VU , and VL cannot receive
thermal radiant energy from the body, the heat loss (per
unit time and unit area) is given by

qrad 5 sT 4, T 5 T̂(x, y, z),
(2)

(x, y, z) [ V2 < VU < VL .

The heat loss from V1 is not given by (2), since the
energy leaving this surface will, in part, reach itself. Hence,
the heat loss from V1 is given by the difference between
the emitted thermal radiant energy (given by (1)) and theFIG. 1. The considered body.
incident thermal radiant energy on V1 . In other words,

qrad 5 sT 4 2 H, T 5 T̂(x, y, z),
(3)

thermal radiant energy). The black body assumption is
physically reasonable for surfaces with high emittance (e.g., H 5 Ĥ(x, y, z), (x, y, z) [ V1
wrought iron oxidized R « 5 0.94, silica R « 5 0.85, black
lacquer paint R « 5 0.93) because these surfaces absorb in which H is the incident thermal radiant energy per unit
almost all the incident thermal radiant energy [6]. time and unit area on V1 .

It will be assumed that the body dissipates energy (for The field H is given by [1]
instance, due to the presence of electronic devices). This ef-
fect will be modelled as a source term in the partial differen- H 5 Ĥ(x, y, z)
tial equation which governs the heat transfer inside V.

5 E
(x9,y9,z9)[V1

sT̂(x9, y9, z9)4 K̂(x, y, z, x9, y9, z9) dS9, (4)Since the subset V1 , V is not convex the thermal
radiant energy leaving V1 can reach, directly, V1 . In

(x, y, z) [ V1other words, each point (x, y, z) [ V1 is heated by a
part of the thermal radiant energy which leaves V1 . This

in which, assuming that T depends only on z and r (r ;temperature-dependent effect, taken into account in the
(x2 1 y2)1/2 is the radial variable), the kernel K̂(x, y, z, x9,boundary conditions, increases the effort needed for simu-
y9, z9) may be expressed aslating the problem.

A numerical simulation for this problem employing a
K̂(x, y, z, x9, y9, z9)finite element approximation will be presented. The results

obtained will be compared with the ones obtained under
5

1
4fR2

1
F1 2 uz 2 z9u S (z 2 z9)2 1 6R2

1

[(z 2 z9)2 1 4R2
1]3/2DG (5)the assumption of constant temperature.

The solution to the problem is given by the limit of a
sequence whose elements are obtained from the minimiza- for (x, y, z) [ V1 and (x9, y9, z9) [ V1

tion of functionals that are different from the usual ones
employed in mechanics. They are not quadratic. Each of 3. CONDUCTION HEAT TRANSFER INSIDE V
these elements represents the solution of a conduction/

Since the body is rigid and opaque (black) the energyradiation heat transfer problem with a prescribed external
transfer mechanism inside V is conductive heat transfer.thermal radiant source (instead of a temperature-depen-
The steady-state conductive heat transfer in V is governeddent thermal radiant source). The limit of the sequence is
by [10]the solution of the considered problem with a temperature-

dependent thermal radiant source [4].
2Div q 1 q̊ 5 0, q 5 2k Grad T, (x, y, z) [ V (6)

2. RADIATIVE TRANSFER FROM/TO V
in which q is the conduction heat flux per unit time and
unit area, k is the thermal conductivity (assumed constant),According to the Stefan–Boltzmann law, the amount of

thermal radiant energy (per unit time and unit area) emit- and q̊ is the internal energy supply per unit time and unit
volume (assumed constant and positive).ted at a given point (x, y, z) [ V is given by [1, 6]
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4. THE COUPLED CONDUCTION/RADIATION
K*(h, h9) 5

1
2c1

H2HEAT TRANSFER

The mathematical description for the considered heat
2 uh 2 h9u S (h 2 h9)2 1 6c2

1

[(h 2 h9)2 1 4c2
1]3/2D (13)transfer process is obtained when (6) is regarded, together

with the continuity in the normal heat flux on V.
Since q̊/k is a constant and the body is cylindrical, it

2 uh 1 h9u S (h 1 h9)2 1 6c2
1

[(h 1 h9)2 1 4c2
1]3/2DJ .seems to be more convenient to work with cylindrical coor-

dinates. Hence, taking into account the radial symmetry,
the mathematical problem may be represented as 6. CONSTRUCTION OF THE SOLUTION

The solution, u, to (12) is the limit of the sequence [C0,1
r



r Sr
T
rD1

2T
z2 1

q̊
k

5 0, R1 , r , R2 , 0 , z , L,
C1, C2, C3, ...]. The term Cp (Cp 5 Ĉp(j, h)) is obtained
from the minimization of the functional I p[u] given by [4]

2 k
T
r

5 sT 4 for r 5 R2 , 0 , z , L,

I p[u] 5
1
2
Ec2

c1
E1

0
FSu

j
D2

1 Su
hD2G jdh dj 2 Ec2

c1
E1

0
uj dh djT

z
5 0 for z 5 0, R1 , r , R2 ,

(7)
1

1
5 FEc2

c1

auuu5jdjG
h51

1
1
5 FE1

0
auuu5jdhG

j5c2

(14)
2k

T
z

5 sT 4 for z 5 L, R1 , r , R2 ,

k
T
r

5 sT 4 2 EL

0
sT̃(R1 , z9)4(K̃(z, z9) 1 K̃(z, 2z9)) 1

1
5 FE1

0
auuu5j dhG

j5c1

2 FE1

0
hpuj dhG

j5c1

2fR1 dz9 for r 5 R1 , 0 , z , L.
in which

5. DIMENSIONLESS FORMULATION
hp 5 ĥp(h) 5 E1

0
a[Ĉp21(c1 , h9)]4K*(h, h9) dh9 (15)

At this point it is convenient to introduce the definitions

with C0 ; 0.
j 5

r
L

; h 5
z
L

(9) Taking the first variation of I p[u], the following Euler–
Lagrange equation and natural boundary conditions are
obtained,c1 5

R1

L
; c2 5

R2

L
;

1
a

5
k4

sq̊3L7 (10)

1
j



j
Sj

Cp

j
D1

2Cp

h2 1 1 5 0, c1 , j , c2 , 0 , h , 1,
u 5 S k

q̊L2D T (11)

2
Cp

j
5 auCpu3Cp for j 5 c2 , 0 , h , 1,and rewrite problem (7) as

Cp

h
5 0 for h 5 0, c1 , j , c2 ,1

j



j
Sj

u

j
D1

2u

h2 1 1 5 0, c1 , j , c2 , 0 , h , 1,

2
Cp

h
5 auCpu3Cp for h 5 1, c1 , j , c2 ,

2
u

j
5 au4 for j 5 c2 , 0 , h , 1,

Cp

j
5 auCpu3Cp 2 E1

0
a[Ĉp21(c1 , h9)]4K*(h, h9) dh9u

h
5 0 for h 5 0, c1 , j , c2 ,

(12) for j 5 c1 , 0 , h , 1, (16)
2

u

h
5 au4 for h 5 1, c1 , j , c2 ,

in which the (weak) solution Cp minimizes I p[u].
Since a . 0 andu

j
5 au4 2 E1

0
aũ(R1 , h9)4K*(h, h9) dh9

E1

0
K* (h, h9) dh9 , 1 for any h [ [0, 1] (17)

for j 5 c1 , 0 , h , 1,

in which u 5 ũ(j, h) and the sequence [C0, C1, C2, ...] is such that
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Ĉp(j, h) $ Ĉp21(j, h) $ ? ? ? . Ĉ1(j, h) $ 0;
(18)

In the above equations M and N are such that (M 1 1)
and (N 1 1) are, respectively, the number of nodes in

c1 , j , c2 , 0 , h , 1,
the j and h directions and ‘‘int’’ denotes the ‘‘integer
part of.’’

and has as its limit a nonnegative function (denoted here
In (21) up

i is the value of the admissible field u at the
by Cy) that is the unique solution of (12). In other words

node i.
u ; Cy is the unique solution of problem (12) [11].

Combining (14) with (21) the functional I p[u] becomes
Hence, the solution of (12) (denoted here by u) may be

the function gp given by
reached through the minimization of the functionals I 1[u],
I 2[u], I 3[u], ... defined by (14). This assertion is proved
in [4]. gp 5 ĝp(up

1 , up
2 , ..., up

(N11)(M11)) 5 ONM

j51
(Ap

j 1 Bp
j )

(22)
7. THE CONSTANT TEMPERATURE

APPROXIMATION 1 OM
j51

Cp
j 1 ON

k51
(Dp

k 1 E p
k 1 F p

k)

Frequently, for engineering purposes energy transfer
problems like the one considered here are regarded under in which Ap

j , Bp
j , Cp

j , Dp
k , E p

k , and F p
k are given as

the assumption that the body temperature is constant. This
approximation may be reached by assuming that the admis-

Ap
j 5

1
2
Ejj1Dj

jj
Ehj1Dh

hj
FSu

j
D2

1 Su
hD2G j dj dhsible fields u are constant (when minimizing I p[u]).

The constant temperature approximation uc will be
the limit of the sequence [C0

c , C1
c , C2

c , C3
c , ...] (in which

5
1
2

Dj Dh E1

0
E1

0
FS 1

Dj

u
f
D2

1 S 1
Dh

u
nD2G (jj 1 fDj) dn df,C0

c 5 0) whose elements are given by

j 5 1, 2, 3, ..., NM; (23)
Cp

c 5 Hc2
2 2 c2

1 1 a[2c1 2 2(c2
1 1 1)1/2 1 2](Cp21

c )4

a[c2
2 2 c2

1 1 2c2 1 2c1]
J1/4

. (19)
Bp

j 5 2Ejj1Dj

jj
Ehj1Dh

hj

uj dh dj 5 2Dj Dh E1

0
E1

0
u(jj 1 fDj) dn df,

In this case the limit of the sequence is given by
j 5 1, 2, 3, ..., NM; (24)

uc 5 lim
pRy

Cp
c 5 H c2

2 2 c2
1

a[c2
2 2 c2

1 1 2c2 1 2(c2
1 1 1)1/2 2 2]J1/4

. (20) Cp
j 5

a
5 FEjj1Dj

jj

uuu5j djG
h51

5
a
5

Dj FE1

0
uuu5(jj 1 fDj) dfG

n51
,

j 5 1, 2, 3, ..., M; (25)These results will be used for comparisons with other
approximations (to be constructed by finite elements).

Dp
k 5

a
5

c2 FEhj1Dh

hj

uuu5 dhG
j5c2

5
a
5

c2 Dh FE1

0
uuu5 dnG

f51
,

8. THE FINITE ELEMENT APPROXIMATION

The first step for reaching a finite element approximation k 5 int Sj 2 1
M D1 1, j 5 M, 2M, 3M, ..., NM; (26)

for the dimensionless temperature field u is to look for an
approximation for the elements of the sequence [C0, C1,

E p
k 5

a
5

c1 FEhj1Dn

hj

uuu5 dhG
j5c1

5
a
5

c1 Dh FE1

0
uuu5 dnG

f50
,C2, ...].

The following finite element approximation will be con-
sidered for the admissible fields u, for each cell j, when

k 5 int Sj 2 1
M D1 1, j 5 1, M 1 1,minimizing I p[u] (see Fig. 2),

2M 1 1, ..., (N 2 1)M 1 1; (27)

Fp
k 5 2c1 FEhj1Dh

hj

hpu dhG
j5c1

5 2c1 Dh FE1

0
hp

ku dnG
f50

,
u 55

(up
i11 2 up

i )f 1 up
i111M 2 (up

i111M 2 up
i )n

for 0 # f # 1, f # n # 1,

(up
i121M 2 up

i111M)f 1 up
i111M 1 (up

i11 2 up
i121M)n

for 0 # f # 1, 0 # n # f,
k 5 int Sj 2 1

M D1 1, j 5 1, M 1 1,

2M 1 1, ..., (N 2 1)M 1 1. (28)

i 5 j 1 int Sj 2 1
M D , j 5 1, 2, 3, ..., NM. (21)

In (28) the field hp
k is defined as
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FIG. 2. The considered finite element approximation and a typical cell j (with elements 2j 2 1 and 2j).

hp
k 5 ĥ p

k(n) 5 ĥp(1 2 (k 2 n) Dh),
(29) Cp

j 5
a
5

Dj Hjj
uup

j11u5up
j11 2 uup

j u5up
j

6(up
j11 2 up

j )0 # n # 1, k 5 1, 2, 3, ..., N.

1 Dj Fuup
j11u7 2 uup

j u7

7(up
j11 2 up

j )2 2
uup

j11u5up
j11 2 uup

j u5up
j

6(up
j11 2 up

j )2 ujGJ,
From (23), (24), (25), (26), and (27) the expressions for

Ap
j , Bp

j , Cp
j , Dp

k , and E p
k are obtained, if up

j11 ? up
j ;

Cp
j 5

a
5

Dj Sjj 1
1
2

DjD uup
j u5,

Ap
j 5

1
2

Dj Dh HFSup
i11 2 up

i

Dj
D2

if up
j 5 up

j11 , j 5 1, 2, 3, ..., M; (32)

1 Sup
i 2 up

i111M

Dh D2G S1
2

jj 1
1
6

DjD Dp
k 5

a
5

c2 Dh Huup
k(M11)u5up

k(M11) 2 uup
(k11)(M11)u5up

(k11)(M11)

6(up
k(M11) 2 up

(k11)(M11))
J ,

if up
k(M11) ? up

(k11)(M11);1 FSup
i121M 2 up

i111M

Dj
D2

D p
k 5

a
5

c2 Dh uup
k(M11)u5,

1 Sup
i11 2 up

i121M

Dh D2G S1
2

jj 1
1
3

DjDJ ,
if up

k(M11) 5 up
(k11)(M11) , k 5 1, 2, 3, ..., N; (33)

j 5 1, 2, 3, ..., NM; (30)

Bp
j 5 2Dj Dh H(up

i11 2 up
i ) S1

6
jj 1

1
12

DjD E p
k 5

a
5

c1 Dh 5
uup

(k21)(M11)11u5up
(k21)(M11)11

2 uup
k(M11)11u5up

k(M11)11

6(up
(k21)(M11)11 2 up

k(M11)11)
6 ,

2 (up
i111M 2 up

i ) S1
3

jj 1
1
8

DjD if up
(k21)(M11)11 ? up

k(M11)11 ;

E p
k 5

a
5

c1 Dh uup
(k21)(M11)11u5,

1 up
i111M Sjj 1

1
2

DjD2 (up
i121M 2 up

i11) S1
6

jj 1
1
8

DjD
if up

(k21)(M11)11 5 up
k(M11)11 , k 5 1, 2, 3, ..., N; (34)

1 (up
i121M 2 up

i111M) S1
3

jj 1
1
4

DjDJ ,
while the evaluation of F p

k will be discussed in the next
section.j 5 1, 2, 3, ..., NM; (31)
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The approximation for Cp is, in this case, given by
cp

k 5 c1 Dh ON
n51

cp
kn , cp

kn 5 OL
b151

OL
b251

h( f p
kn((b1 2 1) Dn, (b2 2 1) Dn)

1 f p
kn((b1 2 1) Dn, b2 Dn))(b1 2 1) Dn

Cp 55
(Cp

i11 2 Cp
i )f 1 Cp

i111M 2 (Cp
i111M 2 Cp

i )n

for 0 # f # 1, f # n # 1,

(Cp
i121M 2 Cp

i111M)f 1 Cp
i111M 1 (Cp

i11 2 Cp
i121M)n

for 0 # f # 1, 0 # n # f, j 5 1, 2, 3, ..., NM,
1 ( f p

kn(b1 Dn, (b2 2 1) Dn)

1 f p
kn(b1 Dn, b2 Dn))b1 Dnj S1

2
DnD2

,(35)

in which Cp
1 , Cp

2 , Cp
3 , ..., Cp

(N11)(M11)21 and Cp
(N11)(M11) are Dn 5

1
L

, k 5 1, 2, 3, ..., N; (40)
such that the minimum of gp is given by gp

min 5 ĝp(Cp
1 ,

Cp
2 , Cp

3 , ..., Cp
(N11)(M11)).

dp
k 5 c1 Dh ON

n51
dp

kn , dp
kn 5 OL

b151
OL

b251
9. EVALUATING Fp

k

h( f p
kn((b1 2 1) Dn, (b2 2 1) Dn)

The term F p
k will be given as

1 f p
kn((b1 2 1) Dn, b2 Dn)

F p
k 5 cp

k(up
(k21)(M11)11 2 up

k(M11)11) 1 dp
kup

k(M11)11 ,
(36)

1 f p
kn(b1 Dn, (b2 2 1) Dn)

k 5 1, 2, 3, ..., N.
1 f p

kn(b1 Dn, b2 Dn)j S1
2

DnD2

,

The coefficients cp
k and dp

k are given by

Dn 5
1
L

, k 5 1, 2, 3, ..., N; (41)
cp

k 5 2c1 Dh E1

0
hp

kn dn, dp
k 5 2c1 Dh E1

0
hp

k dn (37)

in which (L 1 1) is the number of nodes for the numeri-
cal integration.in which

10. THE PROCEDURE FOR MINIMIZING gp

hp
k 5 ĥp

k(n) 5 ĥp(1 2 (k 2 n) Dh) 5 ON
n51

E1

0
f p

kn(n, n9) dn9
The coefficients Cp

i in (35) are obtained from the minimi-
zation of the function gp, with (N 1 1)(M 1 1) independent

5 ON
n51

E1

0
a[(Cp21

(n21)(M11)11 2 Cp21
n(M11)11)n9

real variables.
The procedure used for minimizing gp consists of em-

1 Cp21
n(M11)11]4K**kn (n, n9) dn9,

ploying, successively, a Newton scheme [12] for minimizing
0 # n # 1, k 5 1, 2, 3, ..., N, (38)

the functions gp
q , with one real variable.

Defining (X 0
1 , X 0

2 , X0
3 , ..., X 0

(N11)(M11)) as the initial esti-
where K**kn (n, n9) is given as. mate and (X m

1 , X m
2 , X m

3 , ..., X m
(N11)(M11)) as the estimate

at the iteration m for (Cp
1 , Cp

2 , Cp
3 , ..., Cp

(N11)(M11)), the
function gp

q is defined as
K**kn (n, n9) 5 Dh

1
2c1

H2 2 u(n 2 n9 1 n 2 k) Dnu

gp
q 5 ĝp

q(X) 5 ĝp(Xm11
1 , Xm11

2 , ..., Xm11
q21 , X, Xm

q11, ..., Xm
(N11)(M11)).

(42)F ((n 2 n 9 1 n 2 k) Dh)2 1 6c2
1

[((n 2 n9 1 n 2 k) Dh)2 1 4c2
1]3/2G

The minimum of gp
q is obtained from the root of the

2 u(n 1 n9 2 n 2 k) Dh 1 2u
(nonlinear) equation

F ((n 1 n9 2 n 2 k) Dh 1 2)2 1 6c2
1

[((n 1 n9 2 n 2 k) Dh 1 2)2 1 4c2
1]3/2GJ , dgp

q

dX
5 0, gp

q 5 ĝp
q(X). (43)

k 5 1, 2, 3, ..., N; n 5 1, 2, 3, ..., N. (39)

The root of (43) is obtained from the (Newton) itera-
tive schemeThe coefficients cp

k and dp
k will be approximated by
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FIG. 3. Dimensionless temperature u versus dimensionless radial position j (the curves A, B, ..., I correspond to h 5 0.000, h 5 0.125, ..., h 5

1.000) and versus dimensionless axial position h (for part A the curves A, B, ..., I correspond to j 5 0.500, j 5 0.5625, ..., j 5 1.000 and for part
B the curves A, B, ..., I correspond to j 5 1.000, j 5 1.250, ..., j 5 3.000). Obtained with M 5 N 5 8 for a 5 1.0, c1 5 0.5, and c2 5 1.0 (part A)
and for a 5 10.0, c1 5 1.0, and c2 5 3.0 (part B). The dashed line represents the constant temperature approximation.

Y e11 5 Y e 2
dgp

q

dX U
X5Ye@d2gp

q

dX 2 U
X5Ye

(44) max
1#i#(N11)(M11)

UXm11
i 2 X m

i

X m11
i

U# «. (47)

in which
11. SOME RESULTS

Y 0 5 X m
q , X m11

q 5 Y e*, (45) Figure 3 presents the approximation for u obtained for
some given values of a, c1 , c2 , M, and N. The left side of

where e* is an integer such that, for a given small d, each part presents the curves u versus j (for (N 1 1) values
of h) while the right side presents the curves and u versus
h (for (M 1 1) values of j). In this figure the dashedUY e11 2 Y e

Y e11 U# d for e . e*. (46)
line represents the constant temperature approximation,
obtained from Eq. (20).

Figure 4 presents a three-dimensional representation (uThis procedure is repeated until, for a given small «, the
following holds: as function of j and h) for four particular situations.
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FIG. 4. The dimensionless temperature field u as a function of j and h, obtained with M 5 8 and N 5 8 for a 5 50.0, c1 5 1.0, and c2 5 2.0
(part A), for a 5 50.0, c1 5 0.5, and c2 5 3.0 (part B), for a 5 10.0, c1 5 0.3, and c2 5 1.0 (part C) and for a 5 100.0, c1 5 0.1, and c2 5 0.3
(part D).

These results correspond to the minimization of gp9 in approximations (obtained with different M and N) for a
selected situation.which p9 is an integer such that

12. FINAL REMARKS

max
1#i#(N11)(M11)

UCp9
i 2 Cp921

i

Cp9
i

U, 0.00001. (48)
It is to be noticed that the constant temperature approxi-

mation becomes a good assumption when a R 0.
For instance, for a 5 0.0001, c1 5 0.5, c2 5 1.0, andFigure 5 presents the sequence of intermediate solutions

M 5 N 5 8 we have umax 5 7.268 and umin 5 6.931. Compar-C1, C2, C3, C4, C5, and C6 as functions of j, the dimen-
ing the constant temperature approximation (given by Eq.sionless radial position. This figure illustrates the conver-
(20)—in this case uc 5 7.079) with the finite element ap-gence to u.
proximation (obtained with M 5 N 5 8), the maximumThe curve C1 versus j (first iteration) represents the
relative error defined asapproximation obtained without nonconvexity effects. The

effect of the reemission from the body to itself may be
Emax 5

MAXhuumax 2 ucu, uuc 2 uminuj
umin

(49)observed by comparing the first iteration with subse-
quent iterations.

Figure 6 presents a comparison among four different is less than 2.72%.
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FIG. 5. The fields Cp (for p 5 1, p 5 2, p 5 3, p 5 4, p 5 5, and p 5 6) versus the dimensionless radial position j (for h 5 0.000 (A), h 5

0.250 (B), h 5 0.500 (C), h 5 0.750 (D), and h 5 1.000 (E)), obtained with N 5 4 and M 5 3 for a 5 1.0, c1 5 0.5, and c2 5 1.0.

On the other hand, if, instead of a 5 0.0001 we choose The energy, per unit time, generated in the body (in its
dimensionless form) is given bya 5 10.0 (in this case umax 5 0.475, umin 5 0.358, and uc 5

0.398), the maximum relative error (Emax) is 21.5%. For
a 5 0.01 we have Emax 5 4.81% and for a 5 1.0 we have EG 5 E

V
1 dV 5 f(c2

2 2 c2
1). (AI.1)

Emax 5 13.4%.
Some issues of convergence and accuracy may be dis-

The energy, per unit time, lost by thermal radiation (incussed based on Figs. 5 and 6. In Fig. 5 it is easy to see
its dimensionless form) is given bythat for p 5 5 the convergence has been reached. In fact,

for all the numerical simulations carried out (in addition
to the ones presented in this work), the convergence was ER 5 FE1

0
au42fc1 dhG

j5c1

1 FE1

0
au42fc2 dhG

j5c2reached for p # 10. The worst case (among the ones simu-
lated) was observed for a 5 100.0, c1 5 0.1, and c2 5 0.3

1 FEc2

c1

au42fj djG
h51

(AI.2)using M 5 N 5 6. In such case the convergence (inequality
(48)) was reached for p 5 10.

The relation between accuracy and grid is illustrated in 2 FE1

0
E1

0
au4K*(h, h9) dh dh9G

j5c1

.
Fig. 6. In general, with M 5 N 5 6, a good accuracy was
observed in the simulations carried out.

If u is the exact solution, ER must be equal to EG . In
the cases where u is obtained from a numerical approxima-APPENDIX I: EVALUATING THE ERROR IN THE
tion, the following quantity provides a measure of the nu-ENERGY BALANCE
merical error in the energy balance

This work is concerned with a steady-state energy trans-
fer process in a body with known internal heat generation L 5 uEG 2 ERu/EG . (AI.3)
surrounded by a vacuum. In other words, the amount of
energy leaving the body by thermal radiation must be equal For instance, when a 5 50.0, c1 5 0.5, and c2 5 3.0 (in

this case EG 5 27.49), the error ‘‘L’’ is given byto the amount of energy generated in the body.
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If u is the exact solution, then EC 5 EG . So the error
L9 may be defined as

L9 5 uEG 2 ECu/EG . (AI.7)

For instance, when a 5 50.0, c1 5 0.5, and c2 5 3.0 (the
same case considered above), the error ‘‘L9’’ is given by

L9 5 0.7377 (when M 5 N 5 1) (AI.8)

L9 5 0.4461 (when M 5 N 5 2). (AI.9)

The use of L and L9 as an error estimate for numerical
calculations may be unrealistic. This assertion may be illus-
trated as follows:

Suppose that a 5 50.0, c1 5 0.5, and c2 5 3.0. In this
case, under the constant temperature approximation, the
obtained dimensionless temperature is u 5 0.3287.

Now, consider the linear problem

1
j



j
Sj

u

j
D1

2u

h2 1 1 5 0, c1 , j , c2 , 0 , h , 1,

u 5 0.3287 for j 5 c1 , j 5 c2 , and h 5 1, (AI.10)

u

h
5 0 for h 5 0.

Evaluating ER and EC employing the exact solution of
(AI.10) it is easy to see that

ER 5 EC 5 EG ⇒ L 5 L9 5 0. (AI.11)
FIG. 6. Dimensionless temperature u versus dimensionless radial po-

sition j obtained with M 5 1 and N 5 1 (for h 5 0.00 (A) and h 5 1.00
Nevertheless, u is not a solution for (12).(B)), with M 5 2 and N 5 2 (for h 5 0.00 (A), h 5 0.50 (B), and h 5

1.00 (C)), with M 5 4 and N 5 4 (for h 5 0.00 (A), h 5 0.25 (B), h 5

0.50 (C), h 5 0.75 (D), and h 5 1.00 (E)) and with M 5 8 and N 5 8 REFERENCES
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